
Journal of Magnetic Resonance 202 (2010) 190–202
Contents lists available at ScienceDirect

Journal of Magnetic Resonance

journal homepage: www.elsevier .com/locate / jmr
icoshift: A versatile tool for the rapid alignment of 1D NMR spectra

F. Savorani, G. Tomasi, S.B. Engelsen *

Quality & Technology, Department of Food Science, Faculty of Life Sciences, University of Copenhagen, Rolighedsvej 30, 1958 Frederiksberg C, Denmark
a r t i c l e i n f o

Article history:
Received 25 August 2009
Revised 3 November 2009
Available online 18 November 2009

Keywords:
Preprocessing
NMR
Alignment
Metabonomics
Chemometrics
Algorithm
1090-7807/$ - see front matter � 2009 Elsevier Inc. A
doi:10.1016/j.jmr.2009.11.012

* Corresponding author. Fax: +45 3533 3245.
E-mail addresses: frsa@life.ku.dk (F. Savorani),

se@life.ku.dk (S.B. Engelsen).
a b s t r a c t

The increasing scientific and industrial interest towards metabonomics takes advantage from the high
qualitative and quantitative information level of nuclear magnetic resonance (NMR) spectroscopy. How-
ever, several chemical and physical factors can affect the absolute and the relative position of an NMR
signal and it is not always possible or desirable to eliminate these effects a priori. To remove misalign-
ment of NMR signals a posteriori, several algorithms have been proposed in the literature. The icoshift
program presented here is an open source and highly efficient program designed for solving signal align-
ment problems in metabonomic NMR data analysis. The icoshift algorithm is based on correlation shifting
of spectral intervals and employs an FFT engine that aligns all spectra simultaneously. The algorithm is
demonstrated to be faster than similar methods found in the literature making full-resolution alignment
of large datasets feasible and thus avoiding down-sampling steps such as binning. The algorithm uses
missing values as a filling alternative in order to avoid spectral artifacts at the segment boundaries.
The algorithm is made open source and the Matlab code including documentation can be downloaded
from www.models.life.ku.dk.

� 2009 Elsevier Inc. All rights reserved.
1. Introduction

In recent years a constantly increasing interest has been de-
voted towards the – omics sciences in which Nuclear Magnetic
Resonance Spectroscopy (NMR) plays a central role since it is able
to provide, in a short time, a reliable and unique metabolic finger-
print of complex chemical and/or biological matrices. However, the
large amount and the high complexity of the acquired data make it
challenging to disentangle the sought meaningful information, and
a major effort has been made lately for providing the researchers
with mathematical and statistical tools able to cope, in a reason-
able time, with such overwhelming information. Multivariate data
analysis methods have been developed and tailored for dealing
with this new complex problem, providing a step forward into data
handling and interpretation of metabolomic and metabonomic
studies which are becoming more and more common. Multivariate
data-mining in spectroscopy has a long history in near infrared
spectroscopy but has a weaker tradition in nuclear magnetic reso-
nance spectroscopy. While the first application of multivariate che-
mometric analysis to NMR spectra appeared in the early eighties
[1], it was not until the early nineties that the field of metabonom-
ics emerged and the highly complex metabolic fingerprints in NMR
spectra of body fluids made the need for powerful multivariate
ll rights reserved.
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data analysis obvious [2]. Chemometrics is now rapidly gaining
momentum in the analysis of NMR spectra [3]. However, NMR data
are not always readily suitable for the analysis by so-called bilinear
chemometric methods. NMR spectra are generally a sequence of
response signals, closely spaced Lorentzian peaks, differing in
shape, intensity and position. While all these entities carry impor-
tant information, changes in peak positions of the same analyte
signal between samples does not conform to the bilinearity
assumptions and thus deteriorate the chemometric modeling. In
algebraic terms, bilinearity requires that each column (if samples
are stored in the rows of a matrix) contain information about a sig-
nal originating from an identical common compound along all the
samples in order the statistical approach to be able to work prop-
erly. However, especially due to small pH changes and intermolec-
ular interactions, this is rarely the case with biological samples,
wherefore it is imperative for multivariate exploratory metabo-
nomics investigations aimed at biomarker profiling or pattern rec-
ognition studies, that the data be aligned before chemometric
analysis. Of course, any effort should be made prior to and during
the NMR analysis for assuring that the samples are being collected
and prepared as homogeneously as possible (preparation proto-
cols) and that the instrumental conditions and parameters are
identical [4]. Despite standardization, spectral misalignments still
occur and this is the reason why a posteriori aligning methods
are required. The aim of this study is to provide the NMR spectros-
copist with a simple, versatile and efficient algorithm for perform-
ing a posteriori alignment which uses the newest and fastest
algorithmic techniques.
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Different approaches have been explored for solving the align-
ment problem and have supplied appropriate solutions for many
different experimental cases. The historical bases of such an ap-
proach relies on a very simple, but still largely used method, bin-
ning or bucketing, which involves a data reduction, performed
through NMR signals integration within standardized spectral re-
gions whose width commonly ranges between 0.01 and 0.05 ppm
(bins or buckets) [5]. The major drawback of this solution is the loss
of spectral resolution. When high resolution is required, other and
more sophisticated alignment methods need to be considered such
as dynamic time warping (DTW) or correlation optimized warping
(COW) [6–8], which have been demonstrated to be effective on
chromatographic data and also have been employed for solving
simple NMR alignments with satisfactory results [9]. Apart from
being computationally intensive, the main problem of these two
approaches is that alignment is obtained by local stretching or
compression. This is not really suitable for NMR signals because
this model for correction works best when there is a positive cor-
relation between peak width and shift.

Another important class of alignment methods finds all the rel-
evant peaks present in an NMR spectrum. This converts spectra
into a list of peaks and relative attributes thereby dramatically
decreasing the dimensions of the dataset. Torgrip et al. have intro-
duced and developed these methods [10–12]. The major draw-
backs of these methods are the elimination of the information
carried by the fine structure of the signal shape and the need to de-
fine some meta-parameters for the peak-picking procedure and
subsequent alignment.

An alternative, more advanced, approach concerns designing
algorithms able to perform an automatic NMR peak alignment
with no or limited user intervention, trying meanwhile to keep
all the relevant spectral information. The first attempts to develop
such an algorithm involved the application of a genetic algorithm
to align segments of spectra [13,14], the application of partial lin-
ear fit to align the spectra [15] and a search for the misaligned
spectral region by a PCA based algorithm followed by a rigid shift
[16]. None of these methods have been broadly adopted due to lack
of alignment performance and/or high computational costs. Wong
et al. [17] solved the problem of the computational inefficiency by
employing a Fast Fourier Transformation (FFT) correlation engine
to boost the algorithmic speed (PAFFT) and at the same time intro-
duced the use of regular spectral intervals to be individually and
rigidly aligned. Veskelov et al. [18] combined the properties of
the peak picking methods with the FTT and interval features of
PAFFT. The result is a rapid fully automated aligning process, able
to recursively split the NMR spectra in meaningful intervening re-
gions and to align their signal until a certain degree of goodness is
reached. Similarly, a recently published method using a fuzzy
Hough transform [12] is able to perform an automatic full spectral
alignment. Although promising, these methods rely on a peak pick-
ing algorithm which need the user to set some meta-parameters
which can dramatically affect the final result and especially those
based on the Hough transform are computationally very expensive.

The trend towards interval based algorithms represents a key
step forward in the research of a definitive solution to the align-
ment problem. As a characteristic, the chemical shift of each
NMR signal (or pattern of them) depends on several factors and
can independently change in any direction. Peaks that are adjacent
or even overlapped in one spectrum can be baseline separated in
other spectra and, as an extreme consequence, their relative posi-
tion inverted. When dealing with the spectral features it is there-
fore preferable to reduce the global problem to smaller localized
ones that can be found in specific spectral intervals. In this way,
the shift occurring in opposite directions can be easily solved and
eventually a global, full resolution aligned NMR dataset can be
reconstructed. In practice, it is often only a small percentage of
the total spectral width that suffers for misalignment problems
and, besides increasing the chances of bad corrections, it is clearly
inefficient to align what it is already aligned. An automatic search
for the meaningful regions of intervention can be a desirable op-
tion for an aligning method, but what it is apparent for the average
NMR spectroscopist can be very difficult (and time consuming) to
implement algorithmically. In effect, it is rarely worth the effort of
optimizing several meta-parameters in order to make a method
work compared to manually select the regions of intervention.
Fully automated procedures also normally do not allow user inter-
vention and, if the achieved result is not satisfying, there are no
alternatives.

The new algorithm presented in this study, icoshift, has been
designed to provide the user with a versatile open source tool for
spectral alignment which is based on rigid shift of intervals and
which uses the FFT to boost the simultaneous alignment of all
spectra in a dataset. icoshift combines a rapid optimized FFT en-
gine, which brings the calculation times for large metabonomic
datasets from hours (e.g., with COW), or minutes [18] to seconds,
with optional interactive facilities for interval definitions and for
alignment automation. It introduces the use of missing values for
solving the interpolation problems that still represent an open is-
sue for other algorithms. Plot and interactive facilities are also pro-
vided for the user to be able to immediately evaluate the achieved
result. Applications of icoshift to solve different misalignment
problems in real experimental NMR datasets will be illustrated in
this paper. The Matlab� (2008b, The Mathworks Inc., Natick, MA,
USA) code of icoshift, including a help section and a demo, is freely
available for download from www.models.life.ku.dk.
2. Results and discussion

2.1. The icoshift algorithm

The icoshift algorithm, namely interval-correlation-shifting,
which derives its name form the basic coshift algorithm [19], inde-
pendently aligns each NMR signal to a target (which can optionally
be an actual signal or a synthetic one like the average, or the med-
ian) by maximizing the cross-correlation between user-defined
intervals. Fig. 1 shows an overview of icoshift results when applied
to a misaligned set of human urine NMR spectra zoomed into a
strongly misaligned region. The algorithm is comprised of three
essential parts: (1) interval definition, (2) maximization of the
cross-correlation of each interval by an FFT engine and (3) signal
reconstruction (Fig. 2). For the three parts, several options are
available depending on how the alignment problem is to be solved.
Therefore, it is possible to define intervals automatically (e.g.,
allowing a full spectrum alignment with regularly spaced intervals,
or adjacent intervals of user-defined length, or customized interval
boundaries), set a boundary for the maximum local correction al-
lowed for each interval and define the fill-in value for the recon-
struction part (viz., a missing value or the first/last point in the
segment).

The basic principle of icoshift is quite similar to other published
methods for the alignment of spectral and chromatographic sig-
nals: Peak Alignment by FFT (PAFFT [17]), Recursive Peak Align-
ment by FFT (RAFFT [17]) and Recursive Segment-wise Peak
Alignment (RSPA [18]) and can in fact be used as a computation en-
gine for these methods as it is efficient and numerically sound. The
algorithm was designed having in mind the wide range of mis-
alignment problems that can be encountered in NMR spectroscopy
(e.g., it allows the registration to a reference signal and completely
customized-interval definitions) and can help reduce the emer-
gence of artifacts related to the insertion/deletion model used for
the alignment (namely, by inserting missing values instead of

http://www.models.life.ku.dk


Fig. 1. Overview of the algorithm results. icoshift provides aligned NMR datasets working on user-defined intervals.

Fig. 2. Simplified flow chart of the algorithm. X is the dataset to be aligned. The ns intervals, whose optimal lag is found through the FFT engine, have form ½ai; bi� for
i ¼ 1; . . . ;ns . and X(t) is the target. The Seg variable defines which type of alignment is used. N is the signal length.
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repeating the value on the boundary). However, like the majority
of current alignment methods, it cannot correct for a change in
the order of peaks. The details of the implementation of icoshift
are given in the experimental section.

Three experimental NMR datasets, covering a multiplicity of
alignment problems to be solved, were used to assess and illustrate
the performance of the icoshift algorithm. The achieved results are
presented and discussed case by case. The figures presented are
based on the actual plot facilities of the icoshift program.

2.2. Case 1: the wine data

The wine dataset consists of 40 spectra of different table wines
[9] in which the spectra were processed and reduced to 8712 data
points covering a 5.5 ppm spectral region (from 6.00 to 0.50 ppm).
The wine samples included red, white and rosé wines that were
not buffered and/or pH adjusted before NMR analysis. This intro-
duced a broad range of shifts of all the pH dependent signals found
in the organic acids/amino acids region. Simple alignment accord-
ing to the TSP (3-(trimethylsilyl)-propionic acid-d4) reference sig-
nal cannot correct for the pH dependent shifts nor for the
dominant ethanol signals. This can be observed in Fig. 3a for exam-
ple by inspection of ethanol’s 13C satellites (signals No. 10, 100, 80 and
800). In the original publication Larsen et al. [9] used COW [20] for
solving the misalignment problem, but since COW was only able
to correct for the shift of the dominant ethanol signals, it was nec-
essary to use an ad hoc multistep interval procedure, utilizing co-
shift, for improving the alignment of a much smaller signal such



Fig. 3. Comparison between raw (a) and icoshift aligned (b) NMR spectra for the table wine dataset. A regular splitting into 50 intervals was performed by the algorithm and
the full alignment process took less than 1 s. The main resonance peaks are: 1. ethanol (–CH2–); 10 . and 100 . 13C satellites of peak 1; 2. glycerol; 3. methanol; 4. malic acid; 5.
succinic acid; 6. acetic acid; 7. lactic acid; 8. ethanol (–CH3); 80 . and 800 . 13C satellites of peak 8.
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as the lactic acid one (signal No. 7 in Fig. 3). The subsequent mul-
tivariate quantitative modeling by iPLS (interval partial least
squares) regression [21] showed greatly improved results making
the authors able to distinguish among the different types of wine
and to obtain reliable calibration models for the prediction of some
indigenous wine metabolites. Just like the iPLS algorithm, the ico-
shift algorithm can split the dataset into a user-defined number of
intervals (or into regular spaced intervals). Fig. 3 shows the 40
superimposed wine spectra before and after the icoshift correction
using regular intervals. Evidently, the spectral alignment problems
are corrected for both the dominant and the smaller peaks. The
alignment of the spectra is produced by the icoshift algorithm by
the Matlab command line #1 in Table 1, which applies icoshift to
the spectra in WineData using the average spectrum as a reference
spectrum and dividing the spectra up into 50 regularly spaced
intervals. The result is shown in Fig. 3b with the 50 regular inter-
vals marked by straight vertical lines. For this dataset, the icoshift
alignment takes less than 1 s and the AlignedWineData is ready for
subsequent multivariate data analysis. As apparent from the figure,
Table 1
Simple command lines in Matlab for applying icoshift to the NMR datasets in the three ca
spectrum as a reference spectrum and dividing the spectra up into 50 regularly spaced inter
a reference spectrum, dividing the spectra up into intervals defined by the vector ‘‘custom_i
plotting. The fourth parameter ‘f’ is optional and makes the icoshift algorithm automatica
applies icoshift to the spectra in NibathData using the average spectrum as a reference an
search for the suitable maximum allowed shift for each interval does not need to be speci
using the average spectrum as a reference and using the signal contained in the interval d

Command line

#1 AlignedWineData = icoshi

#2 AlignedWineData = icoshi

#3 AlignedNibathData = icos

#4 AlignedPlasmaData = icos
almost all the pH dependent broadly misaligned signals are effi-
ciently shift corrected. However, one signal remains evidently mis-
aligned by this procedure (the lactic acid doublet centered at
3.95 ppm; #7), which illustrates one fundamental problem with
unsupervised alignment algorithms: in this case, the spectral split-
ting into regular intervals left one part of the lactic acid signal in
one interval and another part of the signal in the adjacent interval,
which made it impossible for the algorithm to provide an effective
correction for the shift. In icoshift, this problem can easily be over-
come by using a different number of intervals. However, in many
cases, a custom interval solution is preferable for optimal division
of the sample spectra into baseline separated intervals. This can be
done by providing the icoshift algorithm with a vector (‘‘cus-
tom_intervals” in Table 1) containing the boundaries of the desired
intervals. The selected intervals do not necessarily have to be adja-
cent and can be of flexible size. The alignment of the WineData set
to the average spectrum target was applied using the Matlab
command line #2 in Table 1. The third element in the options
parameter makes the icoshift algorithm performing an automatic
ses. Command line #1 applies icoshift to the spectra in WineData using the average
vals. Command line #2 applies icoshift to the WineData using the average spectrum as
ntervals” and using the x-axis definition (ppm) described in the vector ‘‘ppm_scale” for
lly determine the maximum allowed correction for each interval. Command line #3
d the interval settings described by the ‘‘custom_intervals” vector. The automatic fast
fied since it is set as the default. Command line #4 applies icoshift to the PlasmaData
escribed in ‘‘reference_region” as a guide for shifting the entire spectra.

ft(’average’, WineData, 50);

ft(’average’, WineData, custom_intervals, ’f’, [2 0 1], ppm_scale);

hift(’average’, NibathData, custom_intervals);

hift(’average’, PlasmaData, reference_region);
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full-spectrum correlation-shift before the interval alignment. This
additional step is an advantage (more in diminishing the risk of
misalignment than computationally) in cases with large shifts as
it allows the spectra to be roughly pre-aligned according to the
dominant signals. The results of both alignment steps are shown
in Fig. 4 for the challenging lactic acid region. The full-spectrum
correlation-shifting step was effective in aligning the intense etha-
nol peaks as well as their ethanol 13C satellites (since they are
shifted exactly like their main 1H signals) (Fig. 4b), the lactic acid
doublet was not aligned because of its pH dependency. In order
to align these signals the customized interval-correlation-shifting
step was necessary for obtaining fully-aligned signals (Fig. 4c).
Many efforts have been dedicated to optimize the algorithm speed
and for this dataset the time of calculation for this two-step proce-
dure is only about 0.2 s. On the contrary, computation time for
COW is significantly higher, especially when the optimization step
is taken into account. In terms of quality of the alignment, the re-
sults obtained with COW are acceptable, although the lactic acid
region is not handled correctly (cf. Supplementary Fig. 2). Similar
observations can be made about RSPA, which is also slower than
icoshift because of the computation overhead related to the peak
picking and the recursion. RSPA results are comparable with ico-
shift, but not quite as good for the lactic acid region. However, this
might depend on the choice of the meta-parameters, and other
values might lead to improved results. The optimization of these
parameters and a detailed comparison between icoshift and RSPA
is beyond the scope of this paper and is left for future research.

A simple but illustrative way to demonstrate the successful
alignment of the spectra is to compare the performances of multi-
variate PLS regression models to the content of chemical constitu-
ents. In this case, PLS prediction of lactic acid was calculated using
mean-centered data and repeated-random cross-validation for
determining the number of significant PLS components. Fig. 5
Fig. 4. Customized interval alignment of the wine dataset zoomed into the lactic
acid NMR spectral region. The figure clearly illustrates the two steps of the
alignment, starting from the raw data (a), passing through the full-spectrum
correlation-shifted spectra (b) and obtaining the customized interval-correlation-
shifted spectra (c). The intervals selected for the icoshift are highlighted with a
background color. (For interpretation of the references to color in this figure legend,
the reader is referred to the web version of this paper.)
shows a comparison between the calibration curves obtained using
either the unaligned raw spectra (Fig. 5a) or the icoshift-aligned
spectra (Fig. 5b). Clearly, the signal alignment has improved the
PLS model significantly by reducing its complexity and obtaining
a better correlation between measured and predicted values of lac-
tic acid content. A similar, but more dramatic improvement is ob-
tained on the PLS model built for the ethanol calibration. In this
case the Root Mean Square Error of Cross-Validation (RMSECV)
lowered from 0.351 to 0.177 and the R2 improved from 0.79 to
0.95 (Supplementary Figs. 1a and b). It is important to bear in mind
that spectral alignment also can be a destructive process as it can
remove useful physical information related to the signal shifts in
the spectra. This can be demonstrated by the ability of a full-spec-
trum PCA model (mean-centered data) to differentiate among the
three different types of wine, which is clearly lost after the align-
ment process (compare Fig. 5c and d). The shifts induced by differ-
ent acidity (pH) of the three kind of wine, carrying the information
about their nature, are removed after the alignment. This is a fun-
damental characteristic of any spectral alignment process that al-
ways has to be taken into account. However, it is possible to
preserve the information about the shift corrections for all samples
and intervals using an optional output (‘‘ind”) which collects it into
a table. If desired, this table can be appended to the NMR dataset
for a multivariate data analysis that preserves and isolates the shift
information. The wine data demonstrates how spectral alignment
can largely be performed in a fully automated operator-blinded
mode (unsupervised) but also may lead to erroneous results and/
or to deterioration of the information sought. In icoshift, these
problems have been solved by offering an interactive mode that al-
lows the user to define the intervals that are to be aligned leaving
the rest unaffected. The use of the customized-interval definition
has the benefit that user-written algorithms for automatic interval
definition [18] can be directly interfaced to the icoshift program.

2.3. Case 2: the nickel-bath data

In order to test the speed and performance of the icoshift algo-
rithm under more realistic metabonomic conditions, an unusually
large NMR dataset (460 � 40,905) was investigated. The nickel-
bath dataset is part of a study aimed at following the evolution
of organic additives in an electroplating nickel bath (unpublished
data). The superimposed raw spectra (Fig. 7) show strong and
broad signal misalignments along the whole spectral region. Succi-
nic acid was added as an internal standard and its largely misa-
ligned singlet can be found at approximately 2.5 ppm in the
aliphatic region. The aqueous solutions were not buffered prior
to NMR analysis causing also the lactic acid resonance peak to
move within an almost 0.3 ppm wide region which is unusually
broad for normal NMR datasets. Moreover, significant misalign-
ments are also present in the aromatic region for the signals of
some additives that were of great interest for the study of these
nickel-bath samples. This dataset is particularly challenging be-
cause the multiple signal shifts present are of very different mag-
nitude depending on the pH susceptibility of the molecules. This
feature represents an insurmountable problem for the alignment
algorithms based on FFT cross-correlation published so far
[17,18,20] because they use a predetermined and invariable al-
lowed maximum shift for the spectra to be aligned. The maximum
allowed shift is thus identical for each interval in order to prevent
excessive shifting and misalignment on a local scale. However, in
practice, since the intervals can be of different size, the required
maximum allowed shift for one interval can be wider than the size
of another interval. This will seriously limit the algorithm’s flexibil-
ity and hamper its ability to achieve satisfactory results. In order to
overcome this limitation, the icoshift algorithm is implemented
with an (optional) automatic procedure for finding the maximum



Fig. 5. PLS performances and PCA score plots for the wine dataset. Subplots (a) and (b) show the full-random cross-validated PLS calibration curves for the content of lactic
acid obtained before (a, RMSECV = 0.137 R2 = 0.93) and after (b, RMSECV = 0.104 R2 = 0.96) the icoshift alignment when only the NMR region containing the lactic acid doublet
(1.45–1.35 ppm) is taken into consideration. Subplots (c) and (d) show the PCA score plots calculated on the whole NMR region before (c) and after (d) the icoshift alignment.
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allowed shift of each interval. The results of the icoshift alignment
to the average spectrum for the Ni-bath dataset (NibathData in line
#3 of Table 1) using custom intervals are illustrated in Fig. 6. De-
spite the large dimension of the dataset, the icoshift alignment
was completed in only 4.74 s. After the icoshift alignment all the
selected intervals appear fairly well aligned and in particular inter-
val No. 11, containing the singlet peak of the succinic acid, is now
well aligned (Fig. 6c). Such a broad misalignment could not be opti-
mally corrected for using other aligning methods such as COW [20]
and RSPA [18] (Fig. 7). The poor alignment performance of COW
and RSPA are related to the automated segmentation (both) and
in the compression/expansion model for alignment (COW). The
problem is that the succinic acid peak does not always end up in
the same segment in the target spectrum and in the sample to be
aligned. For COW, the problem cannot be solved in an efficient
way just by using custom segment boundaries because the com-
pression/expansion model seeks the alignment of the succinic acid
interval by intervening on the previous intervals. Therefore, the
user-defined segmentation would also affect the other intervals
making the overall procedure lengthy, tedious and without a guar-
anteed success. The problem of RSPA is essentially that the interval
boundaries for the succinic acid are very close to the peak. When
the intervals are not matched between sample and target, they
cannot be corrected because no peaks are present in the target to
estimate the correct shift.

2.4. Case 3: the rat plasma data

It is not always optimal to align a dataset by splitting it into
smaller intervals since complex peak shape can be fundamental
to the sought information. This is normally the case in typical
metabonomic investigations of human (or animal) body biofluids
(blood, urine, fecal liquid, etc.) in which the complexity of the pat-
tern of resonances makes it difficult to define customized intervals
without increasing the risk of deteriorating the relevant informa-
tion. As a common practice metabonomic datasets are acquired un-
der strictly defined experimental conditions, listed by a protocol,
limiting as much as possible the risk of acquiring noisy spectra
[22]. Still, some unwanted variations that may arise both during
the sample preparation and during NMR acquisition can lead to
slightly misaligned spectra even when they have been referenced
to an internal standard. Indeed, for this kind of metabonomic data-
sets (plasma and serum samples) the common referencing mole-
cules TSP or DSS (2,2-dimethyl-2-silapentane-5-sulfonate) have
proved to be unreliable because unpredictable interactions with
blood proteins make their signal vary. Therefore, it has become
common practice to align the spectra according to pH unaffected
signals present in a suitable concentration in all the spectra [22].
A perfect candidate for animal blood samples is the a-D-glucopyr-
anose anomeric doublet, centered at 5.23 ppm, just on the right
side of a broad lipid olefinic resonance at about 5.27 ppm. A plot
of the complete rat plasma spectral dataset is shown in Fig. 8.
The a-D-glucose region is highlighted and amplified in the insets
a and b representing the raw and the aligned spectra, respectively
(alignment result produced by command line #4 of Table 1). In
practice, icoshift searches for the best local cross-correlation for
the provided reference region and then shifts the whole spectra left
or right according to the found shift indexes. Although the correc-
tion is small, it improves the dataset homogeneity and helps the
interpretation of the results of a subsequent multivariate data
analysis. The relatively large metabolomic dataset, including 72
plasma samples and consisting of 21,727 data points covering a
6.86 ppm wide spectral region (from 5.86 to �1.00 ppm) required
only a fraction of second to be aligned (Table 2).



Fig. 6. Customized interval alignment of the nickel-bath data. The dataset is split up into 17 intervals with automatic determination of the maximum allowed shift for each
interval. The 17 user-defined selected intervals are numbered on top of the figure and their background is colored. The peak pointed out by � is the singlet resonance peak of
succinic acid which was used as an internal standard. (b) and (c) show details of the aromatic and the aliphatic NMR regions, respectively. By mouse-clicking on one spectrum
in either the raw spectra window or in the aligned spectra window, the spectrum becomes highlighted in both windows allowing the user to inspect the alignment result for
the individual selected spectrum. This feature is demonstrated in the inset of the aromatic region (b) in which spectrum No. 409 was selected. (For interpretation of the
references to color in this figure legend, the reader is referred to the web version of this paper.)

Fig. 7. Comparison of the alignment results of three different algorithms. The succinic acid region of the nickel-bath dataset is plotted after the full dataset has been aligned
using different methods: (a) raw data; (b) icoshift; (c) COW (‘ ¼ 175 points and t ¼ 10) and (d) RSPA. Maximum allowed shift = 550 points for all methods.
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Fig. 8. icoshift alignment based on a reference signal of the rat plasma metabolomic dataset. The chosen reference region (5.25–5.21 ppm) contains the anomeric doublet of
a-D-glucopyranose which was chosen for the algorithm to drive the alignment of the dataset according to a rigid shift of whole spectra. The average spectrum used as the
target is highlighted in inset (a) which shows the raw data zoomed into the selected reference region as well as inset (b) shows the icoshift aligned data.

Table 3
Calculation times of icoshift for random simulated datasets (ns = 100). Times are in
seconds.

No. samples Sample length

4096 8192 16,384 32,768

50 0.58 1.10 2.06 4.01
100 0.68 1.24 2.32 4.47
200 0.83 1.44 2.74 5.54
400 1.10 1.98 3.89 8.75
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Because of the compression/expansion model for the warping,
COW is not capable of correcting the spectra according to one sig-
nal: the alignment is always global and the best compromise is
found given the segment length and the slack. This can be seen
in Supplementary Fig. 3, which clearly shows that the results for
this method are suboptimal. RSPA, on the other hand, performs
well on the reference signal, but, similarly to COW, it also aligns
other parts of the spectra in order to maximize the local
correlation.
2.5. Computational aspects

Table 2 shows the results for the alignment of the three differ-
ent datasets presented above using the optimal definition of the
intervals for each dataset. As it can be seen, the time consumption
for COW is as expected much larger than for FFT based methods.
Particularly expensive was the search for the optimal warping
parameters: around 6 min were necessary to complete the align-
ment for the Ni-bath data and another 37 were employed to find
the optimal ‘, and t using the simplex procedure. This is manifestly
non-optimal, especially in view of the relatively poor alignment
that was obtained. Computation times for COW and RSPA on data-
set 3 are not meaningful (and therefore not reported) because both
methods operate on a much larger problem (the shift is sought
only on the reference signal in icoshift) and cannot handle this case
correctly.
Table 2
Speed comparison among different algorithms on the alignment of the presented
datasets. Times are in seconds.

Wine Nibath Plasma

COW (opt)a 1.30 (38.3) 348 (2.23 � 103) –
icoshift 0.089 1.9 0.067
RSPA 2.23 22.32 –

a The value in parentheses is the time consumption for the simplex search of the
optimal ‘ and t.
The fact that RSPA requires higher computation times is both
related to the sample-wise operation, without padding to N" (cf.
Section 4.2.1), and to the peak picking and automatic interval def-
inition. Obtaining the most efficient RSPA implementation was not
the aim of this work and it is expected that zero padding to N" will
improve the performance. Table 3 shows the computation times
for a set of artificial sets of specific size, both in terms of number
of samples and length of the signal (100 contiguous intervals were
used). From the table it is apparent that icoshift can be used as a
real time method even for the alignment of very large datasets.
3. Conclusions

The icoshift algorithm presented in this work provides a com-
putationally efficient and versatile tool for the one-dimensional
alignment of NMR signals in large spectral datasets. The speed of
alignment algorithms have previously been a hindrance for their
extensive application, but in all the tests made so far icoshift
proved to be sufficiently fast to allow the NMR spectroscopist to
work with full-resolution datasets almost in real time and to intro-
duce automation improvements. Although only three input param-
eters are required for solving the majority of alignment problems, a
number of optional meta-parameters can be provided to allow the
algorithm to handle special misalignment problems (see Table 1).
The speed of icoshift allows the user to swiftly and interactively
investigate different operative combinations of interval settings
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for achieving the optimal result; the program is designed to be user
friendly and to provide helpful and interactive plot facilities. Para-
doxically, the whole idea behind spectral alignment is to render
the large NMR datasets bilinear and thus suitable for subsequent
multivariate chemometric models such as PCA, PLS and multivari-
ate curve resolution (MCR) [3], but with the wine example, we
have also shown that a perfect alignment of NMR spectra might re-
move part of the information sought. This advocates for using a
customizable tool such as icoshift when aligning NMR spectra.
While icoshift can be operated in a fully automated mode, it has
been specifically designed for allowing user-defined intervals
boundaries. Indeed, the time spent for adjusting the meta-param-
eters required for tuning a fully-automated interval definition step
is often badly spent compared to the time required for the spec-
troscopist to manually select the intervals. However, the icoshift
algorithm has also been designed to be used as an engine for fully
automated interventions as it has been demonstrated on this work
providing that part of programming code (as a separate routine)
that applies a recently published method [18]. Although no direct
comparisons were made, the icoshift algorithm appears to be faster
than other recent methods as seconds are required where others
report minutes for a smaller set on an equivalent computer
[6,17,20]. In order for the software to be widely tested and used
and to make further customizations and improvements possible,
the Matlab source code is freely available for download at
www.models.life.ku.dk/algorithms. Preliminary results have
shown that icoshift performs equally well on chromatographic
data, an investigation that will be pursued in a future publication.
4. Experimental

The primary aim of this study was to describe the new align-
ment algorithm and its performance on realistic NMR datasets. In
the following a short description of each NMR dataset used in
the performance test is provided. The second part of this section
describes the detailed algorithmic aspects of icoshift (a stand-alone
collection of algorithms) and provides comparisons with the previ-
ously published alignment algorithms highlighting advantages and
drawbacks. Finally a comparison of the calculation speed is pro-
vided for all the investigated algorithms.
4.1. NMR datasets

4.1.1. Case 1: the wine data
The wine data include the NMR spectra of 40 table wines of dif-

ferent origin and color (red, white and rosé) and is taken from a
previous study [9]. The NMR samples were prepared from 495 ll
wine and 55 ll of TSP-d4 (5.8 mM) in D2O. 1H NMR spectra were
acquired on a Bruker Avance 400 spectrometer (Bruker Biospin
GmbH, Rheinstetten, Germany), operating at 400.13 MHz Larmor’s
frequency for protons, equipped with a 5 mm BBI probe with Z-
gradients. All experiments were performed at 298 K suppressing
the water resonance by pre-saturation followed by a composite
pulse. All samples were individually tuned, matched and shimmed
and then acquired using a recycle delay of 5 s, 1536 scans and a
dwell time of 60.4 ms for acquisition of 32 k data points, resulting
in a total acquisition time of 1.979 s. Before Fourier transformation,
the FIDs (Free Induction Decay) were zero-filled to 64 k points and
apodized by Lorentzian line-broadening of 0.3 Hz. All spectra were
individually baseline- and phase corrected using XWin-NMR (Bru-
ker Biospin). The wine dataset has dimensions (samples � vari-
ables): 40 � 8712.

Chemical analyses were also performed on the same wines in
order to determine, among the others, their content of ethanol
and lactic acid. These data have been used in the present study
for calculating PLS regression models. The table wine dataset, along
with information concerning the icoshift intervals and the Y
reference chemical values used for PLS calibrations, is available
for download at http://www.models.life.ku.dk/research/data/
Wine_NMR/index.asp.

4.1.2. Case 2: the nickel-bath data
The nickel-bath dataset is part of a study aimed at following the

evolution of organic additives in an electroplating nickel bath
(unpublished data). The samples analyzed were aqueous solutions
containing approximately 10% of D2O. 1H NMR spectra were ac-
quired on a Bruker Avance 500 spectrometer DRX-500 operating
at a Larmor frequency of 500.13 MHz for 1H (11.75 T). All experi-
ments were performed at 298 K suppressing the water resonance
by using the standard Watergate pulse sequence (Bruker Biospin).
All samples were individually tuned, matched and shimmed. A
spectral window of 15.646 ppm was acquired in 2.2 s. The relaxa-
tion delay was 9 s. The FIDs were collected into 32 k complex data
points and 128 scans were accumulated for each spectrum. Total
acquisition time for each spectrum was about 25 min. Zero-filling
to 64 k points and a 0.3 Hz line-broadening multiplication was per-
formed prior to Fourier transformation. The spectra were baseline-
and phase corrected using MestRe-C 4.9.8.0 (www.mestrec.com,
Mestreab Research SL, Santiago de Compostela, Spain). TSP was
used as a chemical-shift reference (d = 0 ppm) and succinic acid
was used as internal standard. In total 460 samples were analyzed
and their NMR spectral region between 9.5 and�0.5 ppm was used
for the present study. The Ni-bath dataset has dimensions (sam-
ples � variables): 460 � 40,905.

4.1.3. Case 3: the rat plasma data
This metabonomic dataset is from the study by Kristensen et al.

[23] in which a combination of NMR analysis and chemometrics
was used as a method for rapidly assessing the lipoprotein sub-
fractions in rat plasma [24]. In that study 100 ll of plasma were
transferred to a 5 mm NMR tube and 450 ll D2O were added. 1H
NMR spectra were then acquired on a Bruker Avance 400 spec-
trometer (9.4 T) operating at 400.13 MHz. All samples were indi-
vidually tuned, matched and shimmed and measured using a
broad band inverse detection probe equipped with Z-gradients de-
signed to 5 mm NMR tubes. Since the average body temperature of
rats is 311 K, all experiments were performed at that temperature.
Water pre-saturation was employed during the recycle period by a
composite 90� pulse in order to suppress the intense water reso-
nance. A spectral window of 8278.15 Hz was acquired in 1.97 s.
The relaxation delay was 20 ls. The FIDs were collected into 32 k
complex data points and 128 scans were accumulated for each
sample. Total acquisition time was 15 min and prior to Fourier
transformation the data were zero-filled to 64 k points and multi-
plied by a 0.3 Hz line-broadening function. The spectra were base-
line- and phase corrected manually using Topspin™ (Bruker
Biospin). A batch of this study, consisting of 72 plasma samples
of rats fed with different diets, was used in the present study.
The rat plasma data has the dimensions (samples � variables):
72 � 21,727.

4.1.4. Human urine data
The human urine dataset is the target of a focused metabonom-

ic study in which icoshift is applied. This study will be the subject
of a forthcoming paper. The challenging region (because of the
strong misalignment) between 2.74 and 2.64 ppm, containing an
NMR doublet of citric acid together with a singlet of TMA (TriMeth-
ylAmine), is shown in Fig. 1 of the present study, demonstrating
the capability of icoshift of solving intricate misalignments of sig-
nals belonging to different molecules.

http://www.models.life.ku.dk/algorithms
http://www.models.life.ku.dk/research/data/Wine_NMR/index.asp
http://www.models.life.ku.dk/research/data/Wine_NMR/index.asp
http://www.mestrec.com
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1H NMR spectra of buffered urine samples were acquired on a
Bruker Avance Ultra Shield 500 spectrometer (Bruker Biospin)
operating at 500.13 MHz (11.75 T) using a broadband inverse
detection probe head equipped with a 120 ll flow-cell. Data were
accumulated at 298 K employing a pulse sequence composed by a
pre-saturation of the water resonance during the recycle period
followed by a composite 90� pulse with an acquisition time of
1.57 s, a recycle delay of 5 s, 128 scans and a sweep width of
10416.67 Hz, resulting in 16 k complex data points. All samples
were individually and automatically tuned, matched and shimmed.
Prior to Fourier transformation, each FID was zero-filled to 64 k
points and apodized by Lorentzian line-broadening of 0.30 Hz.
The resulting spectra were manually phased and automatically
baseline corrected using Topspin™ (Bruker Biospin) and the ppm
scale was referenced towards the TSP peak at 0.00 ppm. Since the
composition and the concentration were very similar for every
sample, the receiver gain was initially set at a fixed value equal
to 287.4 for all the experiments. The human urine dataset has
the dimensions (samples � variables): 98 � 30,000.

4.2. Signal processing

The flow chart of the algorithm is shown in Fig. 2. In this section,
the three parts of the icoshift algorithm: interval definition (cf. Sec-
tion 4.2.2), FFT engine (cf. Section 4.2.1) and reconstruction (cf.
Section 4.2.4) are described. Other alignment methods related to
icoshift and used for comparison are described in the subsequent
sections (viz., PAFFT in Section 4.2.5, RSPA in Section 4.2.6 and
COW in Section 4.2.7).

4.2.1. Cross-correlation by FFT
The theory of the calculation of the cross-correlation coefficient

using the Fourier Transform is well known and will only be out-
lined here [25]. Given two continuous functions XðtÞ and YðtÞ,
the cross-correlation for a lag u between them can be defined as
in Eq. (1)

CX
YðuÞ ¼

Z 1

�1
Yðt þ uÞXðtÞdt ð1Þ

xðf Þ ¼FðXðtÞÞ ¼
Z 1

�1
XðtÞe2piftdt ð2aÞ

XðtÞ ¼F�1ðxðf ÞÞ ¼
Z 1

�1
xðf Þe�2piftdf ð2bÞ

where t and f are generally referred to as time and frequency and
xðtÞ and Xðf Þ are the representations of the same process in the time
and in the frequency domain, respectively. However for this specific
application and representation of the Fourier transform, t denotes
the chemical shift (i.e., a frequency shift expressed in ppm). Corre-
spondingly, f is another variable that can be expressed in ppm�1,
and therefore in some time measurement unit [25], but Xðf Þ is
not the time domain representation of xðtÞ as generally intended
by the NMR community.

If CX
YðuÞ has a maximum at ~u in the domain W ¼ ½�w;w�, one

can define a function eY ðtÞ ¼ Yðt þ ~uÞ that is shifted along t and
has maximum cross-correlation to XðtÞ at t ¼ 0. eY ðtÞ is said to be
the aligned signal, XðtÞ the alignment target, ~u the optimal shift
and w is the width of the search space for the optimal correction.

The Fourier transform (F – Eq. (2a)) and its inverse (F�1 – Eq.
(2b)) allow the calculation of all the cross-correlation values for
arbitrarily large values of w using the fact that CX

YðuÞ can be ex-
pressed as a function of F�1ðxðf Þyðf ÞÞ [25]. This holds also for dis-
crete samples (x and y, respectively) of finite length N of the two
functions, so long as XðtÞ and YðtÞ are periodic and that their period
is of length N; that is, as long as they are completely determined by
x and y. However, this is not the case for sections of NMR spectra
and, in order to avoid contamination from the end sections, it is
necessary to pad x and y with a number of zeros equal to the larg-
est correction allowed w [25]. The FFT algorithm makes it particu-
larly efficient to calculate the CX

YðuÞ in the discrete case and is
therefore often used for the signal alignment [17,18].

Several algorithmic techniques can be used to improve the effi-
ciency of the FFT algorithm. In particular, a significant gain is
achieved by aligning several samples at once rather than one at a
time (Fig. 4 in the Supplementary Material). Note that this is cur-
rently possible in icoshift only if the boundaries of the intervals
are common between spectra and that, for very large N and num-
ber of intervals, it may be too costly memory-wise to treat all the
samples at once.

It is also well known that the FFT algorithm is faster when N is
equal to a power of two [25]. Therefore, in some cases, it is bene-
ficial to pad the samples with zeros to a length of N" ¼ 2dlog2Ne

points, where dxe indicates the smallest integer larger than x. How-
ever, some numerical experiments showed that, while this is al-
most always true (in the Matlab environment) when samples are
treated individually, it is no longer valid when samples are treated
in blocks (cf. Supplementary Material Figs. 4 and 5). In particular,
in the latter case the advantage in computation time appears to
be appreciable (>5%) only when the length of this padding is
limited compared to N or when N is small (below 64 points,
Fig. 5 in the Supplementary Material). Because of the difficulty in
predicting when zero padding to the next power of two is benefi-
cial in the block case, this feature is currently not implemented in
icoshift.
4.2.2. Interval definition and recursion
The FFT engine can operate on the entire spectrum as well as

on intervals of arbitrary length in sequence. Depending on how
the intervals are defined, there are essentially three options avail-
able: to align the entire spectrum, to align separate, non-overlap-
ping intervals independently, or to align the entire spectrum
based on a reference interval. The first and the last options are in-
deed trivial as it is sufficient to shift the signal by ~u points, where
~u is calculated on the entire spectrum or on the reference interval,
respectively. The custom interval case is slightly more complex
and, differently from other FFT-based alignment algorithms,
adjacent intervals can share the common boundary but need not
be contiguous. Moreover, if some regions in the samples are not
included in any interval, they are left untouched (i.e., ~u ¼ 0 for
them).

When automated options for interval definition are used and
either the number of intervals, ns, or their length ‘ are fixed by
the user, adjacent intervals share the common boundary, similarly
to what is done with COW [20]. However, the treatment of the
remainders is different in the two cases: if ns is fixed, ‘ is equal
to c ¼ bNn�1

s c (i.e., the largest integer smaller than Nn�1
s ) for the last

cð‘þ 1Þ � N intervals and c þ 1 for the first N � nsc (that is, the
remainders are equally split between intervals); on the contrary,
if ‘ is fixed, the remainders are attached to the last interval, which
has length ‘þ N � nsð‘� 1Þ, where ns is bðN � 1Þð‘� 1Þ�1c.

In order to keep the icoshift algorithm as general and versatile
as possible, no elaborate segmentation routine based on, e.g., peak
picking was implemented. This also implies that, when automated
interval definition is employed, there is no safeguard against hav-
ing a boundary occurring in the middle of a peak.

icoshift implements a basic (optional) recursion for the custom-
ized interval case; namely, it is possible to perform a full-spectrum
correction before the single intervals are aligned. This has proven
to provide an improved alignment performance in certain cases
at a limited additional computational cost.
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4.2.3. Data interpolation using missing values
The icoshift algorithm is capable of handling missing values that

occur at the beginning or at the end of the discrete intervals of XðtÞ
and YðtÞ. This is possible because the length of x and y need not be
the same. In particular, let Nx þw and Ny þw be the lengths, after
the zero padding to avoid end section contamination, of x and y,
respectively, and, without lack of generality, Nx > Ny; then, in or-
der to calculate Cx

yðuÞ in W, it is sufficient to pad y with Nx � Ny

zeros [25]. Thus, missing values are simply treated by removing
them, zero padding the shortest interval to the same length as
the longest, and by correcting the resulting optimal shift with
the factor D ¼ mx �my (where mx and my is the number of missing
values in the leading sections of x and y, respectively). Namely, if
~umiss is the optimal shift after the removal of the missing values
and the padding to the same length, the optimal shift for the origi-
nal intervals is ~u ¼ ~umiss þ D. The number of trailing missing values
is irrelevant in this respect. Fig. 9 illustrates how the use of missing
values can improve the reliability of the aligned spectra avoiding
the introduction of artifacts that can mislead the successive data
analysis.

4.2.4. Reconstruction
Similarly to the other FFT-based algorithms described herein, an

insertion/deletion model is used by icoshift; therefore, the warping
path (i.e., the function relating the chemical shift axis in the sample
and target spectra) obtained by icoshift is piece-wise linear, made
up of segments of slope one that are connected by vertical, hori-
zontal or empty sections (cf. Fig. 6 in the Supplementary Material).
In particular, having the chemical shift axes for the target and for
the sample (x and y, respectively) on the abscissae and the ordi-
nates, respectively, an horizontal segment corresponds to replicat-
ing the boundary point or to inserting missing values (insertion),
whereas a vertical one entails a deletion. The reconstruction of
the samples is performed independently for each spectrum and
interval, but no global optimality criterion is used. Hence, unlike
COW, but similarly to the other FFT-based alignment algorithms,
there is no measure of the goodness of the fit after the deletion/
insertion occurs. This is clearly suboptimal but works well under
the assumption that the boundaries are located in regions that
do not contain any relevant signal. Algorithmic techniques such
as dynamic programming, breadth first search, beam search or
Fig. 9. Effect of the imputed value on the quality of the aligned signals. (a)
Imputation of first/last boundary point in each interval, (b) imputation of missing
values.
genetic algorithms have been suggested for alignment algorithms
that do not use FFT and cross-correlation. The best options for such
global optimization are currently being investigated.

4.2.5. Peak Alignment by FFT (PAFFT) and Recursive Peak Alignment by
FFT (RAFFT)

The PAFFT algorithm corresponds to the icoshift with automatic
segmentation into intervals of equal length and insertion using the
first/last point in each interval. From the computational point of
view, PAFFT treats the samples separately (one at a time) and
implements padding to the nearest power of two for each interval.
However, compared to icoshift, there is no explicit zero padding to
avoid end section contamination; in practice, in the current imple-
mentation (http://physchem.ox.ac.uk/~jwong/specalign/data/
PAFFT.m, download: 18th August, 2009), the contamination is
avoided only if N" � N P w, but this need not always be the case.

The RAFFT algorithm recursively calls PAFFT with intervals of
decreasing length until some lower limit for N is reached or the
similarity does not improve. This recursion step is not explicitly
implemented in icoshift, which only allows the shift of the full
spectrum as a preliminary step. RAFFT suffers from the same draw-
backs described for PAFFT.

4.2.6. Recursive Segment-wise Peak Alignment (RSPA)
The RSPA method, like PAFFT and RAFFT operates on one sample

at a time and includes an automated interval definition part and a
recursion routine. The automated segmentation is based on peak
picking and on some user-defined constants that depend on the
dataset (e.g., the noise level, the minimum distance between peaks
that are merged to the same interval, the height of peaks that are
considered intense within the set of all the detected peaks). The
principals of the algorithm are only outlined in this section, as
more details are available in the original publication [18]; more
attention will be given to describing the choices made for the
implementation as the source code of RSPA is currently not pub-
licly available.

As a first step a full spectrum shift is performed. Secondly, the
interval boundaries are defined based on peak positions and on
the positions of the corresponding bracketing minima. These are
found as the points where the numerical derivative changes sign
(i.e., no smoothing is used) of the signal. Subsequently, the height
of each peak is determined as the difference between the value at
the maxima and the smallest value at the bracketing minima and
initial estimates of the intervals are taken as the bracketing min-
ima of intense peaks. The result, at this stage is an ordered set of
intervals Am ¼ f½a1; b1�; . . . ; ½aim ; bim �g and heights Hm ¼ fh1; . . . ;

hnmg for each sample m and the target. Intervals relative to intense
peaks (here determined as those whose height exceeds the 30th
percentile of Hm) that are closer than a predefined value s are
merged; that is, if aiþ1 � bi 6 s, then a new interval ½ai; biþ1� is
formed in substitution of the two original ones.

In a second stage, the initial estimates for the intervals for each
sample are compared to those for the target and vice versa. Inter-
vals in a spectrum are considered overlapping with a segment in
the target, if their mean falls within the central part of the target’s
interval (that is if 0:5ðak;sam þ bk;samÞ 2 ½0:75atar þ 0:25btar;

0:25atar þ 0:75btar�) and if overlap occurs for more than one k, then
they are merged and a new segment is formed for the sample as
½aminðkÞ;sam; bmaxðkÞ;sam�. The same procedure is then repeated for the
target to merge target intervals matched to the same sample inter-
val. Finally, the boundaries of the segments in the sample and the
target are compared and matched (that is, if overlapping intervals
in target and sample are ½atar; btar� and ½asam; bsam�, respectively, the
final boundaries are ½minðasam; aref Þ;maxðbsam; bref Þ�). This expan-
sion of the intervals may lead to some overlap between adjacent
intervals within either the sample or the target, which is

http://physchem.ox.ac.uk/~jwong/specalign/data/PAFFT.m
http://physchem.ox.ac.uk/~jwong/specalign/data/PAFFT.m
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eliminated by merging the overlapping intervals. In the optimal
case, the result of this procedure is a set of matched intervals con-
taining relevant peaks and a series of intervening regions with un-
matched peaks or noise. In the simulation of the RSPA based on
icoshift, the intervening regions are not aligned as there would
be no information useful to establish the correctness of the
alignment.

The recursion part includes a function that evaluates the good-
ness of the alignment of each interval in terms of the piece-wise
correlation coefficient qtðxi; yiÞ (i.e., the normalized sum of the
Pearson’s correlation coefficients between segments of length t
for the ith interval). If this value is lower than a predefined thresh-
old, the interval is split. The splitting is done at the minimum in the
spectrum being aligned closer to the minimum of the vector xi � yi,
where � denotes the element-wise product. If a segment resulting
from the split is smaller than the minimum length allowed (taken
as equal to s, i.e., the minimum distance between merged peaks), it
is disregarded. The segments resulting from the splitting are sub-
ject to further (separate) alignment in the following recursion step.
In the implementation of the RSPA used herein, an additional con-
straint is applied to the number of recursions, as it was observed
that artifacts could emerge if too many recursions are applied to
markedly different intervals that are sufficiently long to allow sev-
eral splitting without reaching the lower limit for the segment
length.

4.2.7. Correlation optimized warping (COW)
The COW algorithm has been extensively used for the align-

ment of chromatographic data and has been tested also on NMR
signals [19,20,7]. The methods also finds piece-wise linear warping
paths, but, rather than using a insertion/deletion model it uses a
compression/expansion model. That is, the warping paths are
formed by segments whose slope is allowed to take only a limited
number of values determined by the length of the corresponding
segments (‘) in the sample, and by the so-called slack parameter
t. The COW algorithm aligns the samples with a target by dividing
them in an equal number of segments, whose boundaries (ai for
i ¼ 1; . . . ;ns), in the target, are allowed to take all the integer val-
ues within predefined intervals (namely aiþ1 � ai þ 1 2 ½‘� t; ‘þ t�,
where t is the so-called slack parameter). The optimal warping is
the one that maximizes the sum of the Pearsons correlation coeffi-
cient for all the intervals after the segments in the target are inter-
polated to the same length as the corresponding interval in the
sample (typically ‘). In particular, dynamic programming is used
to ensure that the global maximum, given the local constraints,
is attained. The COW algorithm works spectrum-wise, but from
the algorithmic point of view, it is possible to treat the spectra in
blocks with considerable reduction in computational complexity
[20].

4.3. Computation tests

All the calculations have been performed on a personal com-
puter equipped with i7 core, 965 chipset, 3.2 GHz, 12 GB of mem-
ory, Windows XP-64 SP3 and Matlab� 7.7 (2008b, The Mathworks
Inc., Natick, MA, USA). In-house optimized Matlab routines derived
from the code available at www.models.life.ku.dk have been used.
The optimal segment length and slack parameter for COW have
been obtained using the simplex optimization routine by Skov
et al. [20]. In the corrected version of COW, the calculations on
the nodes in the initial grid search are computed in parallel on
the 8 available cores on the machine. This allowed a �50% reduc-
tion in computation time compared to the non-parallel version.
The RSPA routine (cf. Section 4.2.6) for Matlab has been imple-
mented in-house using icoshift as a computation engine. The func-
tions for peak picking, automatic segmentation and recursion are
optimized to the largest possible extent and will be available for
download at www.models.life.ku.dk.

The synthetic datasets (Table 3) are made of uniformly distrib-
uted random numbers as the computational complexity of icoshift
is only dependent on the length of the intervals, on their number
ns, on the maximum allowed correction w, and on the number of
samples M (that is, OðM

Pns
i ðNi þwÞlog2ðNi þwÞÞ, where Ni þw is

the length of the ith interval zero padded to handle the end section
contamination). Automated segmentation to 100 segments was
used setting the maximum allowed correction as the minimum be-
tween 100 and half the interval length.
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